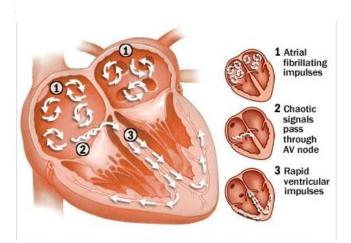


Anticoagulation Therapy in AF: Focus on DOACs

Ashish K Thakur MD DM FRCP FESC FACC(A) FICP FCSI PGCCE FHEA

Consultant Cardiologist
Hony Sr Lecturer & FTPD, MYHT
HEE Yorkshire & Humber
Faculty of Medicine & Health, Univ of Leeds


29 September 2017

The Mid Yorkshire Hospitals MHS AF: Commonest arrhythmia

NHS Trust



Table 3 Cardiovascular morbidity and mortality associated with atrial fibrillation

Event	Association with AF
Death	Increased mortality, especially cardiovascular mortality due to sudden death, heart failure or stroke.
Stroke	20–30% of all strokes are due to AF. A growing number of patients with stroke are diagnosed with 'silent', paroxysmal AF.
Hospitalizations	10-40% of AF patients are hospitalized every year.
Quality of life	Quality of life is impaired in AF patients independent of other cardiovascular conditions.
Left ventricular dysfunction and heart failure	Left ventricular dysfunction is found in 20–30% of all AF patients. AF causes or aggravates LV dysfunction in many AF patients, while others have completely preserved LV function despite long-standing AF.
Cognitive decline and vascular dementia	Cognitive decline and vascular dementia can develop even in anticoagulated AF patients. Brain white matter lesions are more common in AF patients than in patients without AF.

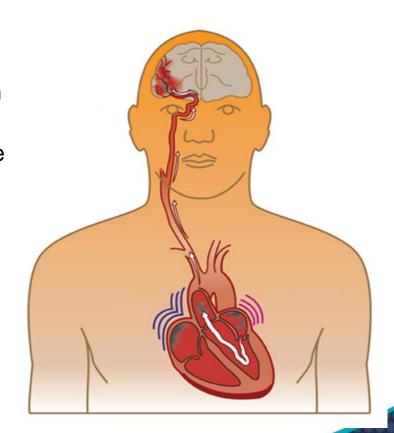
AF = atrial fibrillation; LV = left ventricular.

Prevalence of Atrial Fibrillation A Global Disease

Fegin VL, et al. Lancet. 2014;383:245-254.[2]

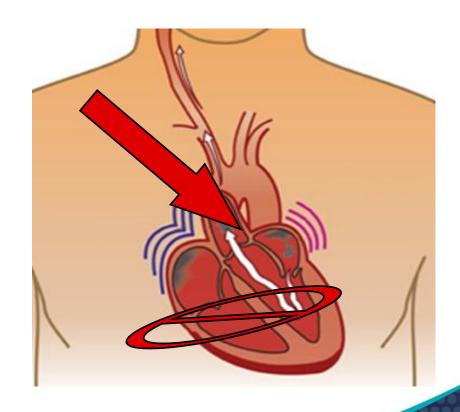
The Mid Yorkshire Hospitals

AF Rx : Challenges


- Do you routinely pulse check?
- What % of patients have asymptomatic AF/PAF?
- Are patients adequately risk stratified?
 - Stroke risk
 - Bleeding risk
- Are they adequately receiving SPAF Rx?
 - If no then what are the limitations?
- Are they directly referred to AC clinic?
- What is your experience with VKA (Warfarin)?
- Do you prescribe DOAC(s)?
 - If Yes then any issues?
 - If No then why?
- Are their symptoms (due to AF) controlled?
- Do they also have angina / HF / CKD?
- Which AF patients get to hospital via GPs?
- Do we refer any patients directly for ablation Rx?

Atrial Fibrillation (AF) and Stroke

- AF prevalence roughly doubles with each advancing decade of life (9% at age 80-89 yrs)¹
- Stroke prevalence increases nearly 5 fold when AF is present²
- In patients with AF, thrombus tend to form in the atria, esp. in left atrial appendage, due to abnormal blood flow and pooling
- These may travel to the brain, causing an ischaemic stroke, which are worst forms of ischaemic strokes
- Around 20% of ischaemic strokes:
 Cardioembolic; of these, AF is the most common cause³
 - 1. NICE CG36 Atrial fibrillation 2006
 - 2. Wolf PA et al. Stroke 1991;22:983-988;
 - 3. Paciaroni M et al. Stroke 2007;38:423-430



AF-related stroke is preventable

- By preventing thrombus formation in the heart (thrombo-prophylaxis)
 - Antithrombotic therapy reduces the risk of stroke and thromboembolism but also increases the risk of bleeding
- Clinical decision-making requires an assessment of benefit—risk

Stroke Prevention In Valvular Heart Disease

- Mechanical prosthetic valve
 - Greatest valvular stroke risk
 - Mitral position further increase in risk
 - Bioprosthetic valve : usually within first 3 mo
 - Associated AF: Further increase in stroke
- Rheumatic MS/MR: more risk than MVP/degenerative VHD

OAC: Common Indications

- (Stroke prevention)SPAF Rx in valvular and NVAF
- After Cardiac Valve Replacement esp mechanical
- Prophylaxis and Treatment of Deep Vein Thrombosis
- Treatment of Symptomatic VTE
- After Acute Myocardial Infarction with cavity thrombus

The Mid Yorkshire Hospitals MHS **NHS Trust**

CHA₂DS₂-VASc complements CHADS₂ scoring system

CHADS ₂	Score	CHA ₂ DS ₂ -VASc	Score
Congestive heart failure	1	Congestive heart failure/left ventricular dysfunction	1
Hypertension	1	Hypertension	1
Aged ≥75 years	1	Aged ≥75 years	2
Diabetes mellitus	1	Diabetes mellitus	1
Stroke/TIA/TE	2	Stroke/TIA/TE	2
Maximum score	6	/ascular disease (prior MI, PAD, or aortic plaque)	1
		Aged 65–74 years	1
		Sex category (i.e. female gender)	1
		Maximum score	9

NHS Improvement

CHA₂DS₂-VASc:

- In patients with a CHADS₂ score of 0–1, or
- When a more detailed stroke risk assessment is indicated

HAS-BLED Bleeding Risk Score

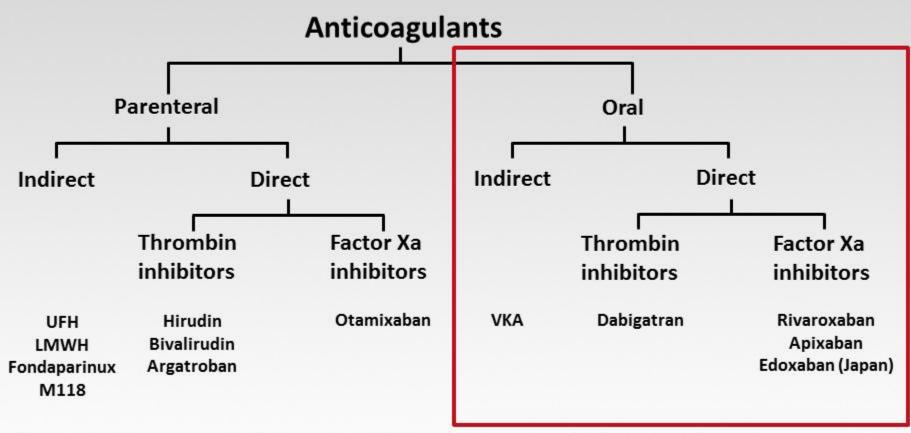
Clinical Characteristic	Score
Hypertension	1
Abnormal renal/liver function (1 point each)	1 or 2
Stroke	1
Bleeding tendency or predisposition	1
Labile INRs (in patients taking wafarin)	1
Elderly (eg, age >65 years)	1 or 2
Drugs or alcohol (1 point each)	1 or 2
Maximum score	9

Hypertension = SBP >160 mmHg; abnormal kidney function = presence of chronic dialysis or renal transplantation or serum creatinine ≥200 μmol/L; abnormal liver function = chronic hepatic disease (eg, cirrhosis) or biochemical evidence of significant hepatic derangement (eg, bilirubin >2 x ULN, in association with AST/ALT/ALP >3 x ULN, etc); bleeding = previous bleeding history and/or predisposition to bleeding (eg, bleeding diathesis, anemia, etc.); labile INRs = unstable/high INRs or poor time in therapeutic range (eg <60%);drugs/alcohol use = concomitant use of drugs with oral anticoagulants, such as antiplatelet agents, NSAIDs, etc.

Pisters R, et al. *Chest*. 2010;138:1093-1100.^[10]

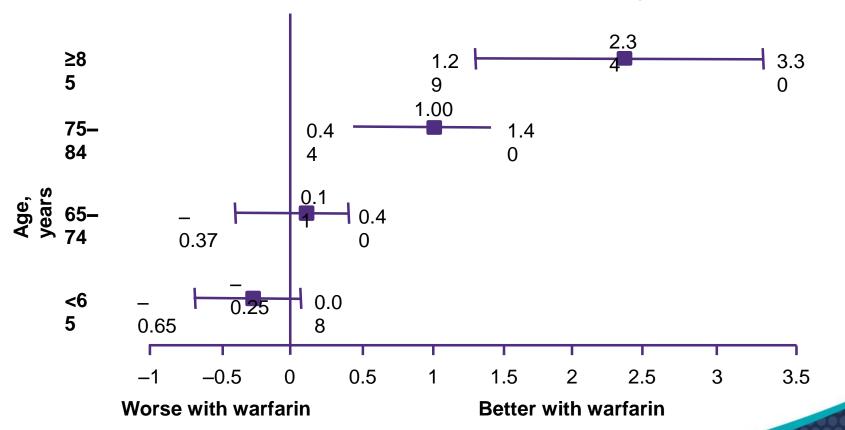
Need for Anticoagulation in AF Patients

- Dependent on the risk for stroke vs the risk for bleeding
 - Patients with low stroke risk may not require anticoagulation therapy

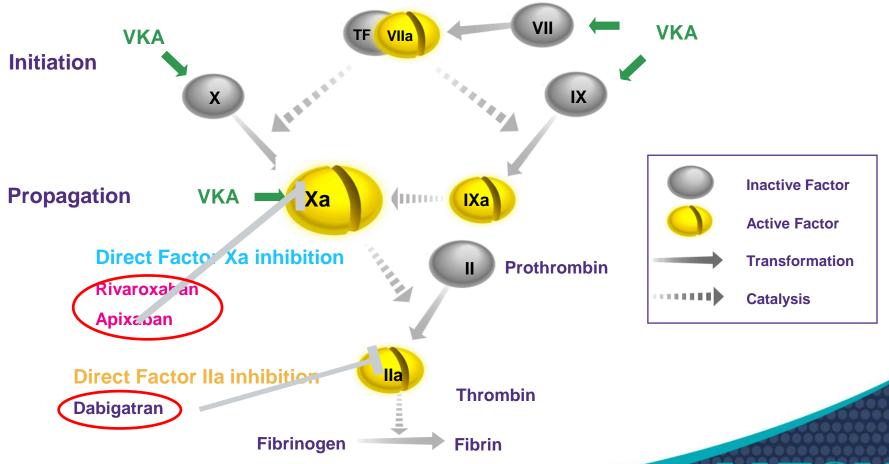


Currently Available Anticoagulants

Classification Based on Route of Administration and Mode of Action


LMWH = low-molecular-weight heparin; UFH = unfractionated heparin; VKA = vitamin K antagonist

OAC: benefit-risk improves with increasing age


Net clinical benefit: events prevented per 100 person-years¹

The Mid Yorkshire Hospitals NHS Trust

Coagulation pathway

VKA Rx: Limitations

Narrow therapeutic window (INR range 2–3)¹

Considerable variability in dose-response (genetic variations)¹

Interactions with drugs and diet¹

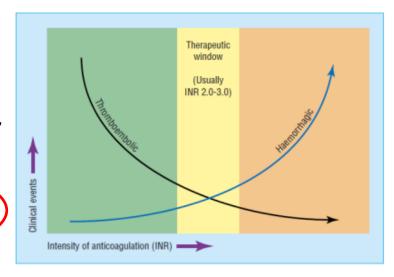
Long half-life Slow onset and offset of action^{1,2}

1. Weitz et al. Eur J Haematol 2010;85 (Suppl 72);1–28.

2. Camm et al. Eur Heart J 2010;31:2369-429.

Risk of stroke Risk of bleeding¹

- Frequent coagulation monitoring¹
- Frequent dose adjustments¹



Issue in perioperative anticoagulation (bridging)²

Time within the therapeutic range (TTR)

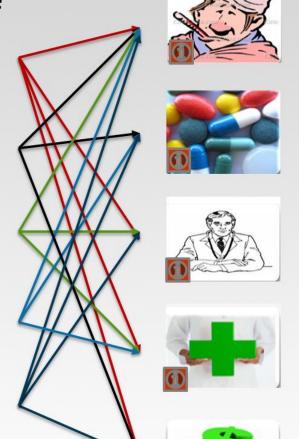
- ▶ The benefit of VKA for reducing the risk of stroke in patients with AF depends on the time in which patients remain in the optimum therapeutic range (INR 2.0–3.0)¹
- There are large variations in TTR between individuals, sites, and countries¹
- In well monitored clinical trials, patients remain in the therapeutic window only between about 50% and 80% of the time^{2–5}
- Observational data from usual clinical practice often show lower means⁶
- 1. Wallentin et al. Lancet 2010;376:975-83.
- 2. Executive Steering Committee for the SPORTIF III Investigators. Lancet 2003;362:1691–8.
- 3. Executive Steering Committee for the SPORTIF V Investigators. JAMA 2005;293:690–8.
- 4. The ACTIVE Writing Group on behalf of the ACTIVE Investigators. Lancet 2006;367:1903–12.
- 5. Connolly et al. Circulation 2008;118:2029-37.
- 6. Samsa et al. Arch Intern Med 2000;160:967-73.
- 7. Granger et al. N Engl J Med 2011;365:981–92.

Blann et al. BMJ 2003;326:153-6.

In ARISTOTLE, patients in the warfarin group had an INR in the therapeutic range (2.0–3.0) for a median of 66.0%⁷

The Reasons for Nonadherence Are Often Multifactorial

Types of nonadherence


Not filling a prescription

Forgetting to take a dose

Taking an incorrect dose

Taking medication at the wrong time

Stopping therapy too soon

Medication-related factors

Prescriber-related factors

Pharmacy-related factors

Healthcare systemrelated factors

DOACS: Benefits

- Superior efficacy vs. antiplatelet drugs
- At least comparable efficacy vs. VKA
- Greater safety, notably in terms of bleeding risk
- Greater convenience for both physicians and patients
- Rapid onset of action
- More stable anticoagulation
- Lesser risk of ICH
- Much shorter offset period than VKA
- Minimal interaction with food/lifestyle
- Fewer drug-drug interactions
- PS: ONLY FOR NVAF (NOT MITRAL STENOSIS OR PHV)
- NO DIRECT ANTIDOTE apart from Dabigatran

DOACS in AF: When to Consider

When adjusted-dose warfarin is not suitable:

- Lifestyle issues: INR monitoring not practical (work, distance, homebound)
- Side effects from warfarin (hair loss / skin rashes)
- Wide fluctuations in INR (genetic polymorphisms affecting metabolism)
- Consistently poor TTR not due to compliance issues
- Poly therapy requiring frequent dose changes
- When concomitant drugs used for short courses, i.e. antibiotics (eg patients with recurrent infections)
- Patient indicated preference

DOACS: Evidence

Metanalysis of 4 NOAC Trials Subgroups: Stroke or SEE

o a z g .	oupo.	Our one or o	RR (95% CI)	Pinteraction
Age	< 75 ≥ 75		0.85 (0.73-0.99) 0.78 (0.68-0.88)	.38
Gender	Female Male		0.78 (0.65-0.94) 0.84 (0.75-0.94)	.52
Diabetes	No Yes	<u></u>	0.83 (0.74-0.93) 0.80 (0.69-0.93)	.73
Prior stroke or TIA	No Yes	<u> </u>	0.78 (0.66-0.91) 0.86 (0.76-0.98)	.30
CrCl	< 50 50-80 > 80		0.79 (0.65-0.96) 0.75 (0.66-0.85) 0.98 (0.79-1.22)	.12
CHADS ₂ score	0-1 — 2 3-6	-	0.75 (0.54-1.04) 0.86 (0.70-1.05) 0.80 (0.72-0.89)	.76
VKA status	Naïve Experienced		0.75 (0.66-0.86) 0.85 (0.70-1.03)	.31
Center- based TTR	< 66% ≥ 66% 0.5	Favors NOAC 1	0.77 (0.65-0.92) 0.82 (0.71-0.95) Favors Warfarin 2	.60

Reprinted from Ruff CT, et al. Lancet. 2014;383:955-962,[16] with permission from Elsevier.

The Mid Yorkshire Hospitals **MHS**

DOACS: Choices

TABLE 1

Table 1. Pharmacological characteristics of the main NOACs

NHS Trust

DRUG	DABIGATRAN RIVAROXABAN ETEXILATE		APIXABAN	EDOXABAN
Mechanism of action	direct thrombin inhibitor	direct factor Xa inhibitor	direct factor Xa inhibitor	direct factor Xa inhibitor
Oral bioavailability	6.5%	80-100%	50%	62%
Time to max inhibition	0.5-2 h	1-4 h 1-4 h		1-2 h
Half-life	12-14 h	5-13 h	8-15 h	10-14 h
Renal excretion (fraction of absorbed dose)	85%	85% 66% (36% unchanged and 30% inactive metabolites) 27%		50% (of the absorbed drug)
Potential metabolic drug interaction	Inhibitors of P-gp: verapamil> reduce dose; dronedarone> avoid Potent inducers P-gp*: avoid	Potent inhibitors of CYP3A4# and P-gp†: avoid Potent inducers of CYP3A4‡ and P-gp*: use with caution	Potent inhibitors of CYP3A4# and P-gp†: avoid Potent inducers of CYP3A4‡ and P-gp*: use with caution	Potent inhibitors of P- gp†: reduce dose Potent inducers of P- gp*: avoid
Dose in VTE prevention and treatment°	220 mg OD or 150 mg OD (prev.) 150 BID (treat.)	10 mg OD (prev.) 15 mg BID, then 20 mg OD (treat.)	2.5 mg BID (prev.) 5 mg BID (treat.)	60 mg OD (treat.)
Dose in AF°	110 mg BID or 150 mg BID	20 mg OD or 15 mg OD for CrCl 30-49	5 mg BID or 2.5 BID for risk categories	60 mg OD (30 mg for risk categories) or 30 mg OD (15 mg for risk categories)
Dose in ACS°		2.5 BID		

^{*} Rifampicin, St. John's wort (Hypericum perforatum), carbamazepine, phenytoin

[#] Antifungals (e.g., ketoconazole, intraconazole, voriconazole, posaconazole), chloramphenicol, clarithromycin and protease inhibitors (e.g., ritonavir, atanazavir) † Verapamil, amiodarone, quinidine and clarithromycin

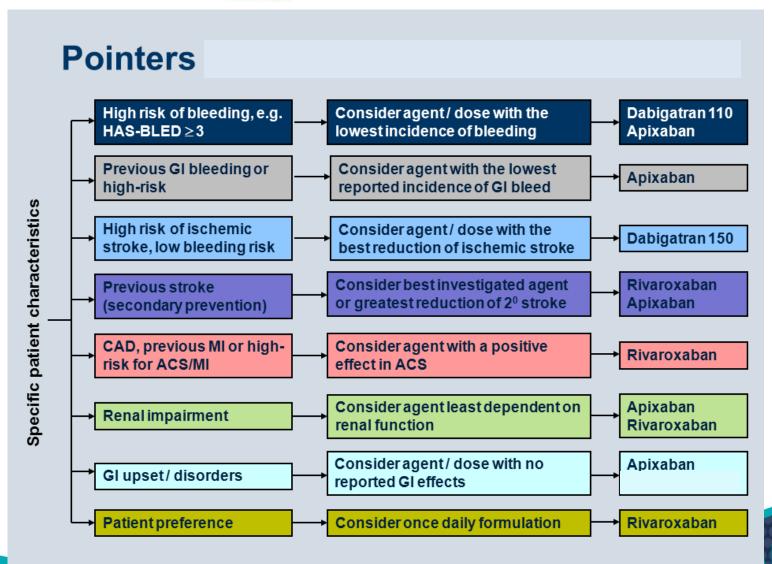
[‡] Phenytoin, carbamazepine, phenobarbital and St. John's wort

[°] Phase III clinical trials - Results for ENGAGE-AF still pending, therefore in this case the dosages do not refer to approved use CYP = cytochrome P450 isoenzyme; F = factor; P-gp = P-glycoprotein; OD = once daily, BID = twice daily

DOACS

Agent	Warfarin	Dabigatran	Rivaroxaban	Apixaban	Edoxaban
Target	IIa, VIIa, IX, Xa	IIa	Xa	Xa	Xa
Peak effect	4-5 days	1.5-3 h	2-4 h	1-3 h	1-2 h
Half-life (h)	40	12-17	5-9	9-14	9-11
Renal element (%)	None	80	33	25	35-50
Dialyzability	No	Yes	No	No	No
Interactions	Many	P-gp	3A4, P-gp	3A4, P-gp	3A4, P-gp
Monitoring	Yes	No	No	No	No
Antidote	Vitamin K	Idarucizumab	No	No	No
Laboratory monitoring	INR	aPTT, diluted TT	PT, anti-Xa	PT, anti-Xa	PT, anti-Xa

P-gp=Glycoprotein; 3A4=Cytochrome P4503A4; aPTT=Activated partial thromboplastin time; TT=Thrombin time; PT=Prothrombin time;


All Approved for Cardioversion

The Mid Yorkshire Hospitals DOACs: Is there a choice?

NHS Trust

The Mid Yorkshire Hospitals WHS DOACs & High bleeding risk

- CKD
 - Moderate eGFR 30-49 ml/min
 - Severe CKD eGFR 15-29 ml/min
 - Dialysis/EGFR < 15 ml/min
- Hepatic impairment
- Drugs affecting metabolism of DOACS
- Other factors
 - Poorly controlled HT
 - Active GI disease
 - Vascular retinopathy
 - Recent ICH / Aneurysms
 - Recent brain/spinal/eye surgery
 - H/o lung bleeding or bronchiectasis
 - Congenital/acquired bleeding disorders

NOACs: How to Switch

- To a NOAC from:
 - Warfarin when INR <2.0 or <3.0 for rivaroxaban
 - LMWH just before the next dose is due
- From NOAC to:
 - Warfarin prescribe concomitantly until INR is in the appropriate range
 - UFH or LMWH just before the next dose is due
 - Another DOAC just before the next dose is due.
- In all cases except warfarin, if the renal function is abnormal, special care
 is needed, as heparins and DOACs can accumulate to varying degrees.

DOACs: Reversal

Necessity of reversal?

- ✓ Bleeding with haemodynamic instability
- ✓ Not possible to postpone surgery or handle bleeding for at least one half-life of the OAC
- ✓ Life-threatening bleeding due to bleeding site (e.g. intracranial bleeding)

Moderate/severe bleeding/urgent surgery

Yes

Life-threatening bleeding/emergency surgery*

General measures

- √ Stop NOAC
- ✓ Mechanical compression
- ✓ Support measures
 - Haemodynamic support
 - Volume replacement
 - Blood transfusion
- ✓ Specific interventions, e.g. surgical haemostasis
- ✓ Maintain diuresis
- Reevaluate indication for antiplatelet therapy

General measures

- ✓ Intensive care setting
- √ Haemodynamic support

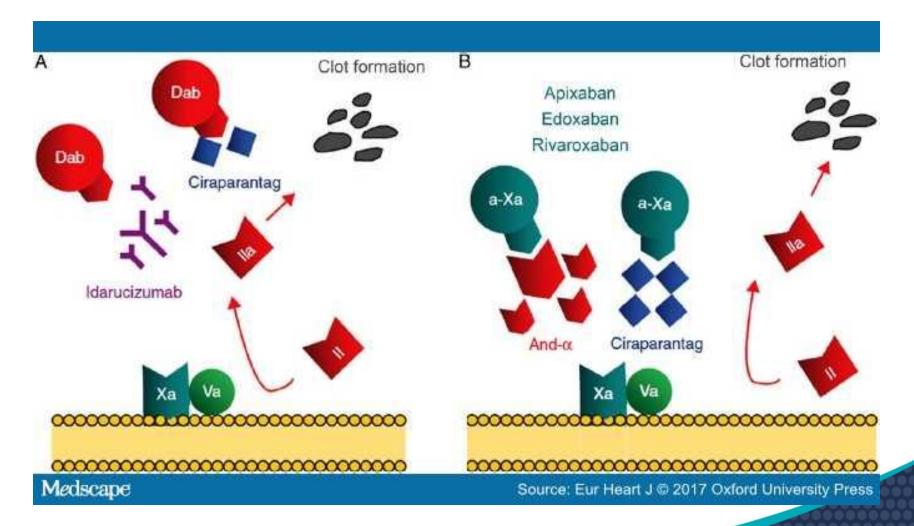
Antagonization of anticoagulant therapy

- ✓ Consider haemodialysis in case of dabigatran
- ✓ Oral charcoal if intake of NOAC < 2h</p>
- ✓ Use specific antidote for NOACs**
- Consider antagonization of concomitant antiplatelet therapy***
- ✓ If specific antidote not available/not sufficient
 - Plasma transfusion for coagulopathy
 - Prothrombin complex concentrate (high-dose or repetitive)
 - And/or rFVIIa if no effect of previous measures

NHS Trust

The Mid Yorkshire Hospitals DOACs: Reversal agents

New reversal agents for non-vitamin K antagonist oral anticoagulants


	Idarucizumab	Andexanet	Ciraparantag (PER977)
Target	Dabigatran	Oral direct factor Xa-inhibitors, low-molecular-weight heparins and fondaparinux	Oral direct factor Xa and Ila inhibitors, low-molecular-weight heparins, un-fractionated heparin and fondaparinux
Structure	Humanized Fab fragment	Human rFXa variant	Synthetic small molecule
Immediate onset of reversal (<10 min)	Yes	Yes	Yes
Duration of effect	(12 to) 24 h	2 h	24 h
Re-administration possible	Yes, after 24 h	Unknown	Currently tested (NCT02207257)
Tested in healthy volunteers	Yes (NCT020287809)	Yes	Yes (NCT01826266, NCT02207257)
Elderly	Yes	Yes (NCT022207725)	No
Renally impaired	Yes	No	No
Tested in patients	Successful reversal of the specific effect of dabigatran (NCT02104947)	Ongoing (NCT02329327)	No
Pro-coagulation signals	No	Decrease of tissue factor pathway inhibitor activity	No

The clinical development program for Ciraparantag is currently at the Phase II stage, it is not possible to comment on the dose that will be studied in the Phase III trial and which is therefore more likely to be approved for clinical use.

DOACs: Reversal

AF: Recent Perspectives

• Emphasis on:

- Routine Pulse check
- Other modes of AF detection
- CHA2DS2VASC & HASBELD scoring
- TTR (Time in Therapeutic range) ≥ 60%
- SPAF Education
- VKA/NOACs
- Explore reasons for poor INR with warfarin
- Aspirin no more an option
- Review patients not on anticoagulation regularly

The Mid Yorkshire Hospitals WHS Global Challenges for OACs

- NOACs: Cost, Compliance, Indications, Reversibility
- Narrow therapeutic window of VKAs
- Variability of dose response (due to genetic factor)
- VKAs: Interaction with drug / diet
- Difficulty in lab standardization
- Poor patient understanding
- Poor initiation and monitoring
- OTC drugs: NSAIDS interactions, ATT: INH/Rifampicin: Affect INR
- Interaction with frequent antibiotics
- Self regulation for common problems (URI)
- Lack of awareness of target range esp PHV
- Low BMI: Lower doses needed
- Difficult challenges for procedures/ surgeries
- Need for dedicated Anticoagulation clinics
- Cost of travel as many patients dependent on higher/tertiary centres esp post valve op.

SPAF: Ideal Anticoagulant

	Once daily	No Food Interactions	Predictable response	No routine coagulation monitoring	Fixed dosing	Wide therapeutic window	Easily Adaptable for compliance aids
IDEAL	Υ	Υ	Υ	Υ	Υ	Υ	Υ
VKA	Y	N	N	N	N	N	N
DOAC	Y/N	Y Taken with/without food	Υ	Υ	Υ	Υ	Υ

There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are also unknown unknowns. There are things we don't know we don't know.

(Donald Rumsfeld)

